CIMPA Research School : Data Science for Engineering and Technology Tunis 2019

# Bregman divergences a basic tool for pseudo-metrics building for data structured by physics

6a- Bregman divergences from potentials

## Stéphane ANDRIEUX

**ONERA - France** 

Member of the National Academy of Technologies of France

# Building generating functions for BD applied to physical data

### The goals

- Exploit the a priori information gained by the knowledge about the physics
- Take into account physical constraints
- Non-blind processing of heterogeneous data (multiphysics)
- Build appropriate features characterizing physical data fields

#### The means

- Take advantage of potentials, energies or dissipations arising from the equations fulfilled by the data
- Enrich the data with (physically) dual variables
- Use the additivity property of the various Bregman divergence notions

# Potentials for physical fields data

#### Data governed by a linear symmetric PDE

$$u \in V, \ a(u,v) = l(v) \ \forall v \in V_0$$
  
 $a(u,v) = \int_{\Omega} A(u(x), v(x)) dx$ 



*a* symmetric bilinear form on  $U(\Omega) \times U(\Omega)$ ,

l linear form on U

 $V \subset U~$  space of admissible fields ( Dirichlet boundary conditions on parts of  $\partial \Omega~$  )  $V_0$  its tangent space

# Potentials for physical fields data

Data governed by a linear symmetric PDE

$$u \in V, a(u,v) = l(v) \quad \forall v \in V_0$$



| Physics                                                                                           | U space                     | Energy or dissipation density A                                                |
|---------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------|
| Scalar conduction or diffusion (thermal, electrical,<br>Darcean flow, incompressible Stokes flow) | $\underline{H^{d}}(\Omega)$ | $\underline{\underline{k}}.\nabla u.\nabla u$                                  |
| Helmholtz Equation                                                                                | $H^1(\Omega)$               | $\nabla u \cdot \nabla u - k^2 u^2$                                            |
| Elasticity                                                                                        | $H^1(\Omega)^3$             | $\stackrel{C: \underline{\varepsilon}(u): \underline{\varepsilon}(u)}{\equiv}$ |

#### Non linear Fluid Dynamics

For Navier-Stokes equation

The kinetic energy

The enstrophy

 $J(\mathbf{v}(x)) = \rho \|\mathbf{v}\|^{2}$  $J(\mathbf{v}(x)) = \rho \|rot \, \mathbf{v}\|^{2}$ 

# Generating functions in thermomechanics for standard generalized materials (I)

#### Description of the local thermodynamic state

 $(\sigma, S, A)$ 

 $\varepsilon$  Deformation or strain Local thermodynamic state variables  $(\varepsilon, T, \alpha)$ T temperature  $\alpha$  (hidden) internal variables  $P = \sigma : \dot{\varepsilon} + ST + A \dot{\alpha}$ 

Dual variables defined through the power production density

 $\sigma$  stress

S Entropy

A Thermodynamic force

#### Generalized Standard Materials

Formulation of the constitutive equation via two convex potentials

Free or Gibbs energy  $\varphi(\varepsilon, \alpha, T)$   $\longrightarrow$  State laws  $\sigma = \frac{\partial \varphi}{\partial \varepsilon}, S = -\frac{\partial \varphi}{\partial T}, A = -\frac{\partial \varphi}{\partial \alpha}$ Pseudo-potential of dissipation  $\mathcal{D}(\dot{\alpha}) \longrightarrow$  Evolution law  $A \in \partial \mathcal{D}(\dot{\alpha})$  or  $\dot{\alpha} \in \partial \mathcal{D}^*(A)$ 

# Generating functions in thermomechanics for standard generalized materials (II)

Incremental Euler implicit constitutive equations

$$\sigma + \Delta \sigma = \frac{\partial \varphi}{\partial \varepsilon} \left[ \varepsilon + \Delta \varepsilon, \alpha + \Delta \alpha \right], A + \Delta A = -\frac{\partial \varphi}{\partial \alpha} \left[ \varepsilon + \Delta \varepsilon, \alpha + \Delta \alpha \right], A + \Delta A = \frac{\partial \mathcal{D}}{\partial \dot{\alpha}} \left( \frac{\Delta \alpha}{\Delta t} \right)$$

$$\downarrow$$
Pair of conjugate variables
(primal,dual)

$$(\sigma + \Delta \sigma, \varepsilon + \Delta \varepsilon), (A + \Delta A, \alpha + \Delta \alpha)$$

We can the use as the generating function any combination  $\varphi + \chi D$   $\chi \ge 0$ 

$$D_{\varphi+\chi\mathcal{D}}\left(\Delta e_{1},\Delta e_{2}\right) = \varphi(\varepsilon + \Delta\varepsilon_{1},A + \Delta A_{1}) - \varphi(\varepsilon + \Delta\varepsilon_{2},A + \Delta A_{2}) + \chi\mathcal{D}\left(\frac{\Delta\alpha_{1}}{\Delta t}\right) - \chi\mathcal{D}$$

 $BG_{\varphi+\chi\mathcal{D}}^{s}\left(\left[\Delta e_{1},\Delta p_{1}\right],\left[\Delta e_{2},\Delta p_{2}\right]\right)=\left(\Delta\sigma_{1}-\Delta\sigma_{2}\right):\left(\Delta\varepsilon_{1}-\Delta\varepsilon_{1}\right)+\frac{\chi+\Delta t}{\Delta t}\left\langle\Delta A_{1}-\Delta A_{2},\Delta\alpha_{1}-\Delta\alpha_{2}\right\rangle$ 

6a – Bregman from potentials

# Generating functions in thermomechanics for standard generalized materials (III)

| Phenomenon                           | Generating<br>function                                             | Symmetrized Bregman gap                                                                                                                                                                                                                                                                                                                                                     |  |
|--------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Scalar<br>conduction or<br>diffusion | Dissipation<br>function                                            | $\frac{1}{2}\int_{\Omega} K\nabla(u_1 - u_2) \cdot \nabla(u_1 - u_2)$                                                                                                                                                                                                                                                                                                       |  |
| Linear<br>elasticity                 | Elastic energy                                                     | $\frac{1}{2}\int_{\Omega} C: \varepsilon(u_1 - u_2): \varepsilon(u_1 - u_2)$                                                                                                                                                                                                                                                                                                |  |
| Non-linear<br>elasticity             | Elastic energy<br>(if convex)                                      | $\int_{\Omega} \left( \Delta \sigma_1 - \Delta \sigma_2 \right) : \left( \Delta \varepsilon(u_1) - \Delta \varepsilon(u_2) \right)$                                                                                                                                                                                                                                         |  |
| Hyper-<br>elasticity                 | Polyconvex<br>elastic energy<br>(variables :<br>cofactors of<br>F) | $\begin{split} \int_{\Omega} (T_1 - T_2) &: (M_1 - M_2) + (cT_1 - cT_2) : (N_1 - N_2) \\ &+ \int_{\Omega} (p_1 - p_2) (d_1 - d_2) \end{split}$                                                                                                                                                                                                                              |  |
| Standard<br>Elastoplasticity         | Free energy<br>Dissipation<br>Pseudo-<br>potential                 | $\int_{\Omega} (1-\chi) (\Delta \sigma_1 - \Delta \sigma_2) : (\Delta \varepsilon(u_1) - \Delta \varepsilon(u_2)) + \chi (\Delta A_1 - \Delta A_2) : (\Delta \alpha_1 - \Delta \alpha_2)$                                                                                                                                                                                   |  |
| Contact<br>Friction                  | Elastic energy<br>Dissipation<br>bi-potential                      | $\int_{a} \left( \Delta \sigma_{1} - \Delta \sigma_{2} \right) : \left( \Delta \varepsilon(u_{1}) - \Delta \varepsilon(u_{2}) \right)$ $+ \int_{r_{e}} - \left( \rho \sigma_{m}^{1} - \rho \sigma_{m}^{2} \right) \left( \left  u_{r}^{1} \right  - \left  u_{r}^{2} \right  \right) + \left( \sigma_{m}^{1} - \sigma_{m}^{2} \right) \left( u_{r}^{1} - u_{r}^{2} \right)$ |  |
| Non-standard<br>elastoplasticity     | Elastic energy<br>Dissipation<br>bi-potential                      | $\int_{\alpha} (1-\chi) \left( \Delta \sigma_{1} - \Delta \sigma_{2} \right) : \left( \Delta \varepsilon(u_{1}) - \Delta \varepsilon(u_{2}) \right) \\ + \chi \left( \Delta A_{1} - \Delta A_{2} \right) : \left( \Delta \alpha_{1} - \Delta \alpha_{2} \right)$                                                                                                            |  |
| Thermo-<br>elasticity                | Elastic energy<br>Thermal<br>Dissipation                           | $\frac{1}{2}\int_{\alpha}C:\left[\varepsilon(u_1-u_2)-\alpha(T_1-T_2)Id\right]:\left[\varepsilon(u_1-u_2)-\alpha(T_1-T_2)Id\right]$ $\frac{1}{2}\int_{\alpha}K\nabla(u_1-u_2)\cdot\nabla(u_1-u_2)$                                                                                                                                                                          |  |

Bregman Divergences and Data Metrics